Functions

Top  Previous  Next

 

You can type the formula for the function. Many functions can be selected with a button. Graphic Calculus knows a number of functions which you can select from a box and paste into the formula box. You still must enter the variable, x or a function of x.

If you want to enter parameters in the function, you must separate them with a semicolon. Example: max(f;g;h).

The names of functions can sometimes cause a problem when the name of the function is used in the name of a parameter. For instance the parameter hints has got  the function int inside, so this will give the parameters h and s. Also y=cos c will rise a problem, but not y=sinc.

For every function in the list below you can find an example in the digital manual.

 

absabsolute value

 Example1

 

arccosarc cosine

 The inverse of the cosine,  defined on [-1; 1]

 Example2

 

arcsinarc sine

 The inverse of the sinus, defined on [-1; 1]

 Example 3

 

arctanarc tangent

 The inverse of the tangent

 Example 4

 

areaarea function

 with this function you can approximate the primitive of a function

 the syntax is: area(function;lowerbound;upperbounds;stepsize)

 example: area(sinx;0;x;0,1) gives the area below the sine graph from x=0

 Example 5

 

bin the binomial function

 the syntax is: bin(n;k)  where n and k are positive whole numbers.

 (In other cases bin is a composed gamma function)

 Example 6

 

blblancmange-function or Van Waerden curve

                       This function is continuous for every x, but nowhere differentiable.

 Example 7 shows the construction of this function

 

coshhyperbolic cosine

 Example 8

 

facfactorial

 fac(n) gives n! for positive values of n

 This is convenient if you are constructing a Taylor series.

 Example 9

 

gradgradient; this function gives an approximation to the slope

 with this function you can approximate the derivative

 the format is: grad(function;x;stepsize)

 example: grad(sinx;x;0,1) gives an approximation of the derivative of y=sinx

 Example 10

 

ifif-function, known from spreadsheets

 the format is if(condition;functon1;funtion2)

 if the condition is satisfied the value is function1 otherwise the value is functon2

 Example 12

 

intinteger or entier function

 the graph is plotted correctly if you choose the point plot drawing mode.

 Example 13

 

maxmaximum value

 the format is: max(function1;function2;…;…)

 You can use more than two functions.

 Example 14

 

minminimum value

 the format is: min(function1;function2;…;…)

 You can use more than two functions.

 Example 15

 

normnormal distribution

 the format is: norm(x;m;s)

 This gives the value of the Normal function at x where m is the mean and s the standard

 Example 16

 

ratrational

                       rat is an approximation of a function defined by:

 rat(x) = 1 for x rational

 rat(x) = 0 for x irrational

 With this function you have to select the point plot drawing mode

 Rat is a pseudo-function because this function is not completely correct because of the finite precision of the computer

 Example 17

 

rationalrational(x;1E-9;10000) is used to calculate rat. Selecting different values gives a better or worse approximation.

 

sgnsign

 gives a 1 with positive values of x, a -1 with negative values of x and 0 with zero.

 Example 18

 

sinh hyperbolic sine                

 Example 19

 

tanhhyperbolic tangent                

 Example 20